Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DEEPCHORUS: A Hybrid Model of Multi-scale Convolution and Self-attention for Chorus Detection (2202.06338v2)

Published 13 Feb 2022 in eess.AS and cs.MM

Abstract: Chorus detection is a challenging problem in musical signal processing as the chorus often repeats more than once in popular songs, usually with rich instruments and complex rhythm forms. Most of the existing works focus on the receptiveness of chorus sections based on some explicit features such as loudness and occurrence frequency. These pre-assumptions for chorus limit the generalization capacity of these methods, causing misdetection on other repeated sections such as verse. To solve the problem, in this paper we propose an end-to-end chorus detection model DeepChorus, reducing the engineering effort and the need for prior knowledge. The proposed model includes two main structures: i) a Multi-Scale Network to derive preliminary representations of chorus segments, and ii) a Self-Attention Convolution Network to further process the features into probability curves representing chorus presence. To obtain the final results, we apply an adaptive threshold to binarize the original curve. The experimental results show that DeepChorus outperforms existing state-of-the-art methods in most cases.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.