Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam (2202.06009v3)

Published 12 Feb 2022 in cs.LG

Abstract: 1-bit gradient compression and local steps are two representative techniques that enable drastic communication reduction in distributed SGD. Their benefits, however, remain an open question on Adam-based large model pre-training (e.g. BERT and GPT). In this paper, we demonstrate the non-linearity in Adam causes slow convergence even when 1-bit compression or local steps are individually applied. To alleviate this limitation, we propose 0/1 Adam that linearizes each Adam step via approximating its optimizer states using their stale estimates and linear correlation. 0/1 Adam performs an Adam-like step to preserve the adaptivity, while its linearity allows utilizing 1-bit compression and local steps simultaneously for wall-clock time speed up. We provide convergence guarantee for 0/1 Adam on smooth non-convex objectives. On various large-scale benchmarks such as BERT-Base, BERT-Large, GPT-2 pre-training and ImageNet, we demonstrate on up to 128 GPUs that 0/1 Adam is able to reduce up to 87% of data volume, 54% of communication rounds, and achieve up to 2$\times$ higher training throughput and end-to-end training time reduction compared to the state-of-the-art baseline 1-bit Adam; while enjoying the same statistical convergence speed and end task model accuracy on GLUE dataset and ImageNet validation set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yucheng Lu (21 papers)
  2. Conglong Li (15 papers)
  3. Minjia Zhang (54 papers)
  4. Christopher De Sa (77 papers)
  5. Yuxiong He (59 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.