Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mixture of Online and Offline Experts for Non-stationary Time Series (2202.05996v3)

Published 12 Feb 2022 in cs.LG

Abstract: We consider a general and realistic scenario involving non-stationary time series, consisting of several offline intervals with different distributions within a fixed offline time horizon, and an online interval that continuously receives new samples. For non-stationary time series, the data distribution in the current online interval may have appeared in previous offline intervals. We theoretically explore the feasibility of applying knowledge from offline intervals to the current online interval. To this end, we propose the Mixture of Online and Offline Experts (MOOE). MOOE learns static offline experts from offline intervals and maintains a dynamic online expert for the current online interval. It then adaptively combines the offline and online experts using a meta expert to make predictions for the samples received in the online interval. Specifically, we focus on theoretical analysis, deriving parameter convergence, regret bounds, and generalization error bounds to prove the effectiveness of the algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.