Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Signatures -- Learning Invariants of Planar Curves (2202.05922v1)

Published 11 Feb 2022 in cs.CV

Abstract: We propose a learning paradigm for numerical approximation of differential invariants of planar curves. Deep neural-networks' (DNNs) universal approximation properties are utilized to estimate geometric measures. The proposed framework is shown to be a preferable alternative to axiomatic constructions. Specifically, we show that DNNs can learn to overcome instabilities and sampling artifacts and produce numerically-stable signatures for curves subject to a given group of transformations in the plane. We compare the proposed schemes to alternative state-of-the-art axiomatic constructions of group invariant arc-lengths and curvatures.

Citations (3)

Summary

We haven't generated a summary for this paper yet.