Papers
Topics
Authors
Recent
Search
2000 character limit reached

Strong core and Pareto-optimal solutions for the multiple partners matching problem under lexicographic preferences

Published 11 Feb 2022 in cs.GT and econ.TH | (2202.05484v1)

Abstract: In a multiple partners matching problem the agents can have multiple partners up to their capacities. In this paper we consider both the two-sided many-to-many stable matching problem and the one-sided stable fixtures problem under lexicographic preferences. We study strong core and Pareto-optimal solutions for this setting from a computational point of view. First we provide an example to show that the strong core can be empty even under these severe restrictions for many-to-many problems, and that deciding the non-emptiness of the strong core is NP-hard. We also show that for a given matching checking Pareto-optimality and the strong core properties are co-NP-complete problems for the many-to-many problem, and deciding the existence of a complete Pareto-optimal matching is also NP-hard for the fixtures problem. On the positive side, we give efficient algorithms for finding a near feasible strong core solution, where the capacities are only violated by at most one unit for each agent, and also for finding a half-matching in the strong core of fractional matchings. These polynomial time algorithms are based on the Top Trading Cycle algorithm. Finally, we also show that finding a maximum size matching that is Pareto-optimal can be done efficiently for many-to-many problems, which is in contrast with the hardness result for the fixtures problem.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.