Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Latent Causal Dynamics (2202.04828v4)

Published 10 Feb 2022 in stat.ML, cs.AI, and cs.LG

Abstract: One critical challenge of time-series modeling is how to learn and quickly correct the model under unknown distribution shifts. In this work, we propose a principled framework, called LiLY, to first recover time-delayed latent causal variables and identify their relations from measured temporal data under different distribution shifts. The correction step is then formulated as learning the low-dimensional change factors with a few samples from the new environment, leveraging the identified causal structure. Specifically, the framework factorizes unknown distribution shifts into transition distribution changes caused by fixed dynamics and time-varying latent causal relations, and by global changes in observation. We establish the identifiability theories of nonparametric latent causal dynamics from their nonlinear mixtures under fixed dynamics and under changes. Through experiments, we show that time-delayed latent causal influences are reliably identified from observed variables under different distribution changes. By exploiting this modular representation of changes, we can efficiently learn to correct the model under unknown distribution shifts with only a few samples.

Citations (13)

Summary

We haven't generated a summary for this paper yet.