Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Algebraic Bethe Circuits (2202.04673v4)

Published 9 Feb 2022 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, and hep-th

Abstract: The Algebraic Bethe Ansatz (ABA) is a highly successful analytical method used to exactly solve several physical models in both statistical mechanics and condensed-matter physics. Here we bring the ABA into unitary form, for its direct implementation on a quantum computer. This is achieved by distilling the non-unitary $R$ matrices that make up the ABA into unitaries using the QR decomposition. Our algorithm is deterministic and works for both real and complex roots of the Bethe equations. We illustrate our method on the spin-$\frac{1}{2}$ XX and XXZ models. We show that using this approach one can efficiently prepare eigenstates of the XX model on a quantum computer with quantum resources that match previous state-of-the-art approaches. We run small-scale error-mitigated implementations on the IBM quantum computers, including the preparation of the ground state for the XX and XXZ models on $4$ sites. Finally, we derive a new form of the Yang-Baxter equation using unitary matrices, and also verify it on a quantum computer.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.