Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

The Bethe Ansatz as a Quantum Circuit (2309.14430v2)

Published 25 Sep 2023 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, and hep-th

Abstract: The Bethe ansatz represents an analytical method enabling the exact solution of numerous models in condensed matter physics and statistical mechanics. When a global symmetry is present, the trial wavefunctions of the Bethe ansatz consist of plane wave superpositions. Previously, it has been shown that the Bethe ansatz can be recast as a deterministic quantum circuit. An analytical derivation of the quantum gates that form the circuit was lacking however. Here we present a comprehensive study of the transformation that brings the Bethe ansatz into a quantum circuit, which leads us to determine the analytical expression of the circuit gates. As a crucial step of the derivation, we present a simple set of diagrammatic rules that define a novel Matrix Product State network building Bethe wavefunctions. Remarkably, this provides a new perspective on the equivalence between the coordinate and algebraic versions of the Bethe ansatz.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys. 71, 205 (1931).
  2. R. J. Baxter, Exactly solved models in statistical mechanics, in Integrable Systems in Statistical Mechanics, Series on Advances in Statistical Mechanics (World Scientific, 1982) pp. 5–63.
  3. G. Mussardo, Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics (Oxford University Press, 2020).
  4. C. N. Yang and C. P. Yang, One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System, Phys. Rev. 150, 327 (1966).
  5. E. H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Phys. Rev. 130, 1605 (1963).
  6. L. D. Faddeev, How algebraic bethe ansatz works for integrable model, Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation , 149 (1996), arXiv:hep-th/9605187 .
  7. J. I. Cirac and F. Verstraete, Renormalization and tensor product states in spin chains and lattices, J. Phys. A 42, 504004 (2009), arXiv:0910.1130 [cond-mat.str-el] .
  8. R. Orus, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals Phys. 349, 117 (2014), arXiv:1306.2164 [cond-mat.str-el] .
  9. F. C. Alcaraz and M. J. Lazo, The Bethe ansatz as a matrix product ansatz, J. Phys. A 37, L1 (2004), arXiv:cond-mat/0304170 .
  10. H. Katsura and I. Maruyama, Derivation of the matrix product ansatz for the Heisenberg chain from the algebraic Bethe ansatz, J. Phys. A 43, 175003 (2010), arXiv:0911.4215 [cond-mat.stat-mech] .
  11. A. Cervera-Lierta, Exact Ising model simulation on a quantum computer, Quantum 2, 114 (2018), arXiv:1807.07112 [quant-ph] .
  12. R. I. Nepomechie, Bethe ansatz on a quantum computer?  (2020), arXiv:2010.01609 [quant-ph].
  13. B. Pozsgay, Excited state correlations of the finite heisenberg chain, Journal of Physics A: Mathematical and Theoretical 50, 074006 (2017), arXiv:1605.09347 [cond-mat.stat-mec] .
  14. E. K. Sklyanin, Quantum version of the method of inverse scattering problem, J. Soviet Math. 19, 1546 (1982).
  15. Although the dimensions of ΛΛ\Lambdaroman_Λ depend on k𝑘kitalic_k, we keep this dependence implicit and do not add the corresponding subscript. In this way we stress that the same principle defines ΛΛ\Lambdaroman_Λ for long and short gates.
  16. This equation corresponds to (17) of Sopena et al. (2022), with Gk−1subscript𝐺𝑘1G_{k-1}italic_G start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT identified with 𝒜ksubscript𝒜𝑘{\mathscr{A}}_{k}script_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and Gk−1superscriptsubscript𝐺𝑘1G_{k}^{-1}italic_G start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT with ℬk+1subscriptℬ𝑘1{\mathscr{B}}_{k+1}script_B start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT. The matrices Gksubscript𝐺𝑘G_{k}italic_G start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT were determined there by the recursion relation (16).
  17. V. E. Korepin, Calculation of norms of Bethe wave functions, Communications in Mathematical Physics 86, 391 (1982).
  18. R. Hernandez and J. M. Nieto, Correlation functions and the algebraic Bethe ansatz in the AdS/CFT correspondence,  (2014), arXiv:hep-th/1403.6651.
  19. B. Kraus, Compressed Quantum Simulation of the Ising Model, Physical Review Letters 107, 250503 (2011), arXiv:1109.2455 [quant-ph] .
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.