A second-order Magnus-type integrator for evolution equations with delay (2202.04194v2)
Abstract: We rewrite abstract delay equations to nonautonomous abstract Cauchy problems allowing us to introduce a Magnus-type integrator for the former. We prove the second-order convergence of the obtained Magnus-type integrator. We also show that if the differential operators involved admit a common invariant set for their generated semigroups, then the Magnus-type integrator will respect this invariant set as well, allowing for much weaker assumptions to obtain the desired convergence. As an illustrative example we consider a space-dependent epidemic model with latent period and diffusion.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.