Papers
Topics
Authors
Recent
Search
2000 character limit reached

Wi-Fi Rate Adaptation using a Simple Deep Reinforcement Learning Approach

Published 8 Feb 2022 in cs.NI | (2202.03997v2)

Abstract: The increasing complexity of recent Wi-Fi amendments is making optimal Rate Adaptation (RA) a challenge. The use of classic algorithms or heuristic models to address RA is becoming unfeasible due to the large combination of configuration parameters along with the variability of the wireless channel. Machine Learning-based solutions have been proposed in the state of art, to deal with this complexity. However, they typically use complex models and their implementation in real scenarios is difficult. We propose a simple Deep Reinforcement Learning approach for the automatic RA in Wi-Fi networks, named Data-driven Algorithm for Rate Adaptation (DARA). DARA is standard-compliant. It dynamically adjusts the Wi-Fi Modulation and Coding Scheme (MCS) solely based on the observation of the Signal-to-Noise Ratio (SNR) of the received frames at the transmitter. Our simulation results show that DARA achieves up to 15\% higher throughput when compared with Minstrel High Throughput (HT) and equals the performance of the Ideal Wi-Fi RA algorithm.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.