Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs

Published 8 Feb 2022 in eess.IV, cs.AI, cs.CV, and cs.LG | (2202.03583v4)

Abstract: Traditional methods of identifying pathologies in X-ray images rely heavily on skilled human interpretation and are often time-consuming. The advent of deep learning techniques has enabled the development of automated disease diagnosis systems. Still, the performance of such systems is opaque to end-users and limited to detecting a single pathology. In this paper, we propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time. We use a dense convolutional neural network (DenseNet) for disease diagnosis. Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly with an accuracy of 0.826, while the lowest AUC score was obtained for Nodule, at 0.655 with an accuracy of 0.66. To build trust in decision-making, we generated heatmaps on X-rays to visualize the regions where the model paid attention to make certain predictions. Our proposed automated disease prediction model obtained highly confident high-performance metrics in multi-label disease prediction tasks.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.