2000 character limit reached
Distal systems in topological dynamics and ergodic theory
Published 7 Feb 2022 in math.DS | (2202.03456v2)
Abstract: We generalize a result of Lindenstrauss on the interplay between measurable and topological dynamics which shows that every separable ergodic measurably distal dynamical system has a minimal distal model. We show that such a model can, in fact, be chosen completely canonically. The construction is performed by going through the Furstenberg--Zimmer tower of a measurably distal system and showing that at each step, there is a simple and canonical distal minimal model. This hinges on a new characterization of isometric extensions in topological dynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.