Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imposing Temporal Consistency on Deep Monocular Body Shape and Pose Estimation (2202.03074v2)

Published 7 Feb 2022 in cs.CV

Abstract: Accurate and temporally consistent modeling of human bodies is essential for a wide range of applications, including character animation, understanding human social behavior and AR/VR interfaces. Capturing human motion accurately from a monocular image sequence is still challenging and the modeling quality is strongly influenced by the temporal consistency of the captured body motion. Our work presents an elegant solution for the integration of temporal constraints in the fitting process. This does not only increase temporal consistency but also robustness during the optimization. In detail, we derive parameters of a sequence of body models, representing shape and motion of a person, including jaw poses, facial expressions, and finger poses. We optimize these parameters over the complete image sequence, fitting one consistent body shape while imposing temporal consistency on the body motion, assuming linear body joint trajectories over a short time. Our approach enables the derivation of realistic 3D body models from image sequences, including facial expression and articulated hands. In extensive experiments, we show that our approach results in accurately estimated body shape and motion, also for challenging movements and poses. Further, we apply it to the special application of sign language analysis, where accurate and temporal consistent motion modelling is essential, and show that the approach is well-suited for this kind of application.

Citations (2)

Summary

We haven't generated a summary for this paper yet.