Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Automatic Repair of Source Code Vulnerabilities Using Data-Driven Methods (2202.03055v1)

Published 7 Feb 2022 in cs.SE, cs.CR, and cs.LG

Abstract: Users around the world rely on software-intensive systems in their day-to-day activities. These systems regularly contain bugs and security vulnerabilities. To facilitate bug fixing, data-driven models of automatic program repair use pairs of buggy and fixed code to learn transformations that fix errors in code. However, automatic repair of security vulnerabilities remains under-explored. In this work, we propose ways to improve code representations for vulnerability repair from three perspectives: input data type, data-driven models, and downstream tasks. The expected results of this work are improved code representations for automatic program repair and, specifically, fixing security vulnerabilities.

Citations (6)

Summary

We haven't generated a summary for this paper yet.