Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-Aware Edge Association for Cluster-based Personalized Federated Learning (2202.02727v1)

Published 6 Feb 2022 in cs.LG, cs.AI, and cs.NI

Abstract: Federated Learning (FL) over wireless network enables data-conscious services by leveraging the ubiquitous intelligence at network edge for privacy-preserving model training. As the proliferation of context-aware services, the diversified personal preferences causes disagreeing conditional distributions among user data, which leads to poor inference performance. In this sense, clustered federated learning is proposed to group user devices with similar preference and provide each cluster with a personalized model. This calls for innovative design in edge association that involves user clustering and also resource management optimization. We formulate an accuracy-cost trade-off optimization problem by jointly considering model accuracy, communication resource allocation and energy consumption. To comply with parameter encryption techniques in FL, we propose an iterative solution procedure which employs deep reinforcement learning based approach at cloud server for edge association. The reward function consists of minimized energy consumption at each base station and the averaged model accuracy of all users. Under our proposed solution, multiple edge base station are fully exploited to realize cost efficient personalized federated learning without any prior knowledge on model parameters. Simulation results show that our proposed strategy outperforms existing strategies in achieving accurate learning at low energy cost.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Y. Li (1641 papers)
  2. X. Qin (7 papers)
  3. H. Chen (232 papers)
  4. K. Han (107 papers)
  5. P. Zhang (470 papers)
Citations (10)