Papers
Topics
Authors
Recent
2000 character limit reached

Classification on Sentence Embeddings for Legal Assistance

Published 5 Feb 2022 in cs.CL | (2202.02639v1)

Abstract: Legal proceedings take plenty of time and also cost a lot. The lawyers have to do a lot of work in order to identify the different sections of prior cases and statutes. The paper tries to solve the first tasks in AILA2021 (Artificial Intelligence for Legal Assistance) that will be held in FIRE2021 (Forum for Information Retrieval Evaluation). The task is to semantically segment the document into different assigned one of the 7 predefined labels or "rhetorical roles." The paper uses BERT to obtain the sentence embeddings from a sentence, and then a linear classifier is used to output the final prediction. The experiments show that when more weightage is assigned to the class with the highest frequency, the results are better than those when more weightage is given to the class with a lower frequency. In task 1, the team legalNLP obtained a F1 score of 0.22.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.