Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Published 5 Feb 2022 in cs.LG and cs.AI | (2202.02442v3)

Abstract: Transfer learning approaches in reinforcement learning aim to assist agents in learning their target domains by leveraging the knowledge learned from other agents that have been trained on similar source domains. For example, recent research focus within this space has been placed on knowledge transfer between tasks that have different transition dynamics and reward functions; however, little focus has been placed on knowledge transfer between tasks that have different action spaces. In this paper, we approach the task of transfer learning between domains that differ in action spaces. We present a reward shaping method based on source embedding similarity that is applicable to domains with both discrete and continuous action spaces. The efficacy of our approach is evaluated on transfer to restricted action spaces in the Acrobot-v1 and Pendulum-v0 domains. A comparison with two baselines shows that our method does not outperform these baselines in these continuous action spaces but does show an improvement in these discrete action spaces. We conclude our analysis with future directions for this work.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.