Papers
Topics
Authors
Recent
Search
2000 character limit reached

The CUHK-TENCENT speaker diarization system for the ICASSP 2022 multi-channel multi-party meeting transcription challenge

Published 4 Feb 2022 in eess.AS and cs.SD | (2202.01986v1)

Abstract: This paper describes our speaker diarization system submitted to the Multi-channel Multi-party Meeting Transcription (M2MeT) challenge, where Mandarin meeting data were recorded in multi-channel format for diarization and automatic speech recognition (ASR) tasks. In these meeting scenarios, the uncertainty of the speaker number and the high ratio of overlapped speech present great challenges for diarization. Based on the assumption that there is valuable complementary information between acoustic features, spatial-related and speaker-related features, we propose a multi-level feature fusion mechanism based target-speaker voice activity detection (FFM-TS-VAD) system to improve the performance of the conventional TS-VAD system. Furthermore, we propose a data augmentation method during training to improve the system robustness when the angular difference between two speakers is relatively small. We provide comparisons for different sub-systems we used in M2MeT challenge. Our submission is a fusion of several sub-systems and ranks second in the diarization task.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.