Papers
Topics
Authors
Recent
2000 character limit reached

Variational Nearest Neighbor Gaussian Process

Published 3 Feb 2022 in cs.LG and stat.ML | (2202.01694v4)

Abstract: Variational approximations to Gaussian processes (GPs) typically use a small set of inducing points to form a low-rank approximation to the covariance matrix. In this work, we instead exploit a sparse approximation of the precision matrix. We propose variational nearest neighbor Gaussian process (VNNGP), which introduces a prior that only retains correlations within $K$ nearest-neighboring observations, thereby inducing sparse precision structure. Using the variational framework, VNNGP's objective can be factorized over both observations and inducing points, enabling stochastic optimization with a time complexity of $O(K3)$. Hence, we can arbitrarily scale the inducing point size, even to the point of putting inducing points at every observed location. We compare VNNGP to other scalable GPs through various experiments, and demonstrate that VNNGP (1) can dramatically outperform low-rank methods, and (2) is less prone to overfitting than other nearest neighbor methods.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.