Papers
Topics
Authors
Recent
Search
2000 character limit reached

Periods of singular double octic Calabi-Yau threefolds and modular forms

Published 3 Feb 2022 in math.AG and math.NT | (2202.01556v1)

Abstract: By the modularity theorem every rigid Calabi-Yau threefold $X$ has associated modular form $f$ such that the equality of $L$-functions $L(X,s)=L(f,s)$ holds. In this case period integrals of $X$ are expected to be expressible in terms of the special values $L(f,1)$ and $L(f,2)$. We propose a similar interpretation of period integrals of a nodal model of $X$. It is given in terms of certain variants of a Mellin transform of $f$. We provide numerical evidence towards this interpretation based on a case of double octics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.