$\ell$-away ACM Bundles on Fano Surfaces (2202.01052v2)
Abstract: We propose the definition of $\ell$-away ACM bundle on a polarized variety $(X, \mathcal{O}{X}(h))$. Then we give constructions of $\ell$-away ACM bundles on $(\mathbb{P}2 , \mathcal{O}{\mathbb{P}2}(1))$, $(\mathbb{P}1 \times \mathbb{P}1, \mathcal{O}{\mathbb{P}1 \times \mathbb{P}1}(1,1))$ and the anticanonically polarized blow up of $\mathbb{P}2$ up to three non collinear points. Also, we give the complete classification of $\ell$-away ACM bundles $\mathcal{E}$ of rank 2 for values $1 \leq \ell \leq 2$ on $(\mathbb{P}2 , \mathcal{O}{\mathbb{P}2}(1))$. Similarly, on $(\mathbb{P}1 \times \mathbb{P}1, \mathcal{O}{\mathbb{P}1 \times \mathbb{P}1}(1,1))$, we give such a classification if $\mathrm{det}(\mathcal{E}) = \mathcal{O}{\mathbb{P}1 \times \mathbb{P}1}(a,a)$ for some $a \in \mathbb{Z}$. Moreover, we prove that the corresponding graded module $\mathrm{H}_*1 ( \mathcal{E}) = \underset{{t \in \mathbb{Z} }}{\bigoplus} \mathrm{H}1 (\mathcal{E} (th))$ is connected, extending the similar result for bundles on $\mathbb{P}2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.