Papers
Topics
Authors
Recent
Search
2000 character limit reached

$\ell$-away ACM Bundles on Fano Surfaces

Published 2 Feb 2022 in math.AG | (2202.01052v2)

Abstract: We propose the definition of $\ell$-away ACM bundle on a polarized variety $(X, \mathcal{O}{X}(h))$. Then we give constructions of $\ell$-away ACM bundles on $(\mathbb{P}2 , \mathcal{O}{\mathbb{P}2}(1))$, $(\mathbb{P}1 \times \mathbb{P}1, \mathcal{O}{\mathbb{P}1 \times \mathbb{P}1}(1,1))$ and the anticanonically polarized blow up of $\mathbb{P}2$ up to three non collinear points. Also, we give the complete classification of $\ell$-away ACM bundles $\mathcal{E}$ of rank 2 for values $1 \leq \ell \leq 2$ on $(\mathbb{P}2 , \mathcal{O}{\mathbb{P}2}(1))$. Similarly, on $(\mathbb{P}1 \times \mathbb{P}1, \mathcal{O}{\mathbb{P}1 \times \mathbb{P}1}(1,1))$, we give such a classification if $\mathrm{det}(\mathcal{E}) = \mathcal{O}{\mathbb{P}1 \times \mathbb{P}1}(a,a)$ for some $a \in \mathbb{Z}$. Moreover, we prove that the corresponding graded module $\mathrm{H}_*1 ( \mathcal{E}) = \underset{{t \in \mathbb{Z} }}{\bigoplus} \mathrm{H}1 (\mathcal{E} (th))$ is connected, extending the similar result for bundles on $\mathbb{P}2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.