Papers
Topics
Authors
Recent
2000 character limit reached

Achieving Fairness at No Utility Cost via Data Reweighing with Influence

Published 1 Feb 2022 in cs.LG and cs.CY | (2202.00787v2)

Abstract: With the fast development of algorithmic governance, fairness has become a compulsory property for machine learning models to suppress unintentional discrimination. In this paper, we focus on the pre-processing aspect for achieving fairness, and propose a data reweighing approach that only adjusts the weight for samples in the training phase. Different from most previous reweighing methods which usually assign a uniform weight for each (sub)group, we granularly model the influence of each training sample with regard to fairness-related quantity and predictive utility, and compute individual weights based on influence under the constraints from both fairness and utility. Experimental results reveal that previous methods achieve fairness at a non-negligible cost of utility, while as a significant advantage, our approach can empirically release the tradeoff and obtain cost-free fairness for equal opportunity. We demonstrate the cost-free fairness through vanilla classifiers and standard training processes, compared to baseline methods on multiple real-world tabular datasets. Code available at https://github.com/brandeis-machine-learning/influence-fairness.

Citations (40)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.