Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General, Evolution-Inspired Reward Function for Social Robotics (2202.00617v1)

Published 1 Feb 2022 in cs.RO and cs.LG

Abstract: The field of social robotics will likely need to depart from a paradigm of designed behaviours and imitation learning and adopt modern reinforcement learning (RL) methods to enable robots to interact fluidly and efficaciously with humans. In this paper, we present the Social Reward Function as a mechanism to provide (1) a real-time, dense reward function necessary for the deployment of RL agents in social robotics, and (2) a standardised objective metric for comparing the efficacy of different social robots. The Social Reward Function is designed to closely mimic those genetically endowed social perception capabilities of humans in an effort to provide a simple, stable and culture-agnostic reward function. Presently, datasets used in social robotics are either small or significantly out-of-domain with respect to social robotics. The use of the Social Reward Function will allow larger in-domain datasets to be collected close to the behaviour policy of social robots, which will allow both further improvements to reward functions and to the behaviour policies of social robots. We believe this will be the key enabler to developing efficacious social robots in the future.

Summary

We haven't generated a summary for this paper yet.