Papers
Topics
Authors
Recent
2000 character limit reached

BEA-Base: A Benchmark for ASR of Spontaneous Hungarian

Published 1 Feb 2022 in eess.AS, cs.AI, cs.CL, and cs.SD | (2202.00601v1)

Abstract: Hungarian is spoken by 15 million people, still, easily accessible Automatic Speech Recognition (ASR) benchmark datasets - especially for spontaneous speech - have been practically unavailable. In this paper, we introduce BEA-Base, a subset of the BEA spoken Hungarian database comprising mostly spontaneous speech of 140 speakers. It is built specifically to assess ASR, primarily for conversational AI applications. After defining the speech recognition subsets and task, several baselines - including classic HMM-DNN hybrid and end-to-end approaches augmented by cross-language transfer learning - are developed using open-source toolkits. The best results obtained are based on multilingual self-supervised pretraining, achieving a 45% recognition error rate reduction as compared to the classical approach - without the application of an external LLM or additional supervised data. The results show the feasibility of using BEA-Base for training and evaluation of Hungarian speech recognition systems.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.