Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding the optimal human strategy for Wordle using maximum correct letter probabilities and reinforcement learning (2202.00557v1)

Published 1 Feb 2022 in cs.CL

Abstract: Wordle is an online word puzzle game that gained viral popularity in January 2022. The goal is to guess a hidden five letter word. After each guess, the player gains information about whether the letters they guessed are present in the word, and whether they are in the correct position. Numerous blogs have suggested guessing strategies and starting word lists that improve the chance of winning. Optimized algorithms can win 100% of games within five of the six allowed trials. However, it is infeasible for human players to use these algorithms due to an inability to perfectly recall all known 5-letter words and perform complex calculations that optimize information gain. Here, we present two different methods for choosing starting words along with a framework for discovering the optimal human strategy based on reinforcement learning. Human Wordle players can use the rules we discover to optimize their chance of winning.

Citations (21)

Summary

We haven't generated a summary for this paper yet.