Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Adjusting Ego-Trees Topology for Reconfigurable Datacenter Networks (2202.00320v1)

Published 1 Feb 2022 in cs.NI

Abstract: State-of-the-art topologies for datacenters (DC) and high-performance computing (HPC) networks are demand-oblivious and static. Therefore, such network topologies are optimized for the worst-case traffic scenarios and can't take advantage of changing demand patterns when such exist. However, recent optical switching technologies enable the concept of dynamically reconfiguring circuit-switched topologies in real-time. This capability opens the door for the design of self-adjusting networks: networks with demand-aware and dynamic topologies in which links between nodes can be established and re-adjusted online and respond to evolving traffic patterns. This paper studies a recently proposed model for optical leaf-spine reconfigurable networks. We present a novel algorithm, GreedyEgoTrees, that dynamically changes the network topology. The algorithm greedily builds ego trees for nodes in the network, where nodes cooperate to help each other, taking into account the global needs of the network. We show that GreedyEgoTrees has nice theoretical properties, outperforms other possible algorithms (like static expander and greedy dynamic matching) and can significantly improve the average path length for real DC and HPC traces.

Summary

We haven't generated a summary for this paper yet.