Papers
Topics
Authors
Recent
2000 character limit reached

Solving the Cauchy problem for a three-dimensional difference equation in a parallelepiped (2201.13308v1)

Published 9 Jan 2022 in math.CA, cs.MS, cs.NA, and math.NA

Abstract: The aim of this article is further development of the theory of linear difference equations with constant coefficients. We present a new algorithm for calculating the solution to the Cauchy problem for a three-dimensional difference equation with constant coefficients in a parallelepiped at the point using the coefficients of the difference equation and Cauchy data. The implemented algorithm is the next significant achievement in a series of articles justifying the Apanovich and Leinartas' theorems about the solvability and well-posedness of the Cauchy problem. We also use methods of computer algebra since the three-dimensional case usually demands extended calculations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.