Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GADoT: GAN-based Adversarial Training for Robust DDoS Attack Detection (2201.13102v1)

Published 31 Jan 2022 in cs.CR

Abstract: Machine Learning (ML) has proven to be effective in many application domains. However, ML methods can be vulnerable to adversarial attacks, in which an attacker tries to fool the classification/prediction mechanism by crafting the input data. In the case of ML-based Network Intrusion Detection Systems (NIDSs), the attacker might use their knowledge of the intrusion detection logic to generate malicious traffic that remains undetected. One way to solve this issue is to adopt adversarial training, in which the training set is augmented with adversarial traffic samples. This paper presents an adversarial training approach called GADoT, which leverages a Generative Adversarial Network (GAN) to generate adversarial DDoS samples for training. We show that a state-of-the-art NIDS with high accuracy on popular datasets can experience more than 60% undetected malicious flows under adversarial attacks. We then demonstrate how this score drops to 1.8% or less after adversarial training using GADoT.

Citations (21)

Summary

We haven't generated a summary for this paper yet.