Papers
Topics
Authors
Recent
2000 character limit reached

Potential destination discovery for low predictability individuals based on knowledge graph

Published 30 Jan 2022 in cs.AI | (2201.12845v3)

Abstract: Travelers may travel to locations they have never visited, which we call potential destinations of them. Especially under a very limited observation, travelers tend to show random movement patterns and usually have a large number of potential destinations, which make them difficult to handle for mobility prediction (e.g., destination prediction). In this paper, we develop a new knowledge graph-based framework (PDPFKG) for potential destination discovery of low predictability travelers by considering trip association relationships between them. We first construct a trip knowledge graph (TKG) to model the trip scenario by entities (e.g., travelers, destinations and time information) and their relationships, in which we introduce the concept of private relationship for complexity reduction. Then a modified knowledge graph embedding algorithm is implemented to optimize the overall graph representation. Based on the trip knowledge graph embedding model (TKGEM), the possible ranking of individuals' unobserved destinations to be chosen in the future can be obtained by calculating triples' distance. Empirically. PDPFKG is tested using an anonymous vehicular dataset from 138 intersections equipped with video-based vehicle detection systems in Xuancheng city, China. The results show that (i) the proposed method significantly outperforms baseline methods, and (ii) the results show strong consistency with traveler behavior in choosing potential destinations. Finally, we provide a comprehensive discussion of the innovative points of the methodology.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.