2000 character limit reached
Minimally non-Golod face rings and Massey products (2201.12779v1)
Published 30 Jan 2022 in math.AT, math.AC, and math.CO
Abstract: We give a correct statement and a complete proof of the criterion obtained by Grbi\'c, Panov, Theriault and Wu for the face ring $\Bbbk[K]$ of a simplicial complex $K$ to be Golod over a field $\Bbbk$. (The original argument depended on the main result of a paper by Berglund and J\"ollenbeck, which was shown to be false by Katth\"an.) We also construct an example of a minimally non-Golod complex $K$ such that the cohomology of the corresponding moment-angle complex $\mathcal Z_K$ has trivial cup product and a non-trivial triple Massey product.