Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication-Efficient Consensus Mechanism for Federated Reinforcement Learning (2201.12718v1)

Published 30 Jan 2022 in cs.LG, cs.AI, and cs.MA

Abstract: The paper considers independent reinforcement learning (IRL) for multi-agent decision-making process in the paradigm of federated learning (FL). We show that FL can clearly improve the policy performance of IRL in terms of training efficiency and stability. However, since the policy parameters are trained locally and aggregated iteratively through a central server in FL, frequent information exchange incurs a large amount of communication overheads. To reach a good balance between improving the model's convergence performance and reducing the required communication and computation overheads, this paper proposes a system utility function and develops a consensus-based optimization scheme on top of the periodic averaging method, which introduces the consensus algorithm into FL for the exchange of a model's local gradients. This paper also provides novel convergence guarantees for the developed method, and demonstrates its superior effectiveness and efficiency in improving the system utility value through theoretical analyses and numerical simulation results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.