Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Information-Based Approach to Unsupervised Domain-Adaptive Aspect-Based Sentiment Analysis (2201.12549v1)

Published 29 Jan 2022 in cs.CL

Abstract: Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task which aims to extract the aspects from sentences and identify their corresponding sentiments. Aspect term extraction (ATE) is the crucial step for ABSA. Due to the expensive annotation for aspect terms, we often lack labeled target domain data for fine-tuning. To address this problem, many approaches have been proposed recently to transfer common knowledge in an unsupervised way, but such methods have too many modules and require expensive multi-stage preprocessing. In this paper, we propose a simple but effective technique based on mutual information maximization, which can serve as an additional component to enhance any kind of model for cross-domain ABSA and ATE. Furthermore, we provide some analysis of this approach. Experiment results show that our proposed method outperforms the state-of-the-art methods for cross-domain ABSA by 4.32% Micro-F1 on average over 10 different domain pairs. Apart from that, our method can be extended to other sequence labeling tasks, such as named entity recognition (NER).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiang Chen (343 papers)
  2. Xiaojun Wan (99 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.