Papers
Topics
Authors
Recent
2000 character limit reached

Limitation of Characterizing Implicit Regularization by Data-independent Functions

Published 28 Jan 2022 in cs.LG | (2201.12198v2)

Abstract: In recent years, understanding the implicit regularization of neural networks (NNs) has become a central task in deep learning theory. However, implicit regularization is itself not completely defined and well understood. In this work, we attempt to mathematically define and study implicit regularization. Importantly, we explore the limitations of a common approach to characterizing implicit regularization using data-independent functions. We propose two dynamical mechanisms, i.e., Two-point and One-point Overlapping mechanisms, based on which we provide two recipes for producing classes of one-hidden-neuron NNs that provably cannot be fully characterized by a type of or all data-independent functions. Following the previous works, our results further emphasize the profound data dependency of implicit regularization in general, inspiring us to study in detail the data dependency of NN implicit regularization in the future.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.