Papers
Topics
Authors
Recent
2000 character limit reached

Generative Coarse-Graining of Molecular Conformations

Published 28 Jan 2022 in cs.LG, physics.chem-ph, and physics.comp-ph | (2201.12176v2)

Abstract: Coarse-graining (CG) of molecular simulations simplifies the particle representation by grouping selected atoms into pseudo-beads and drastically accelerates simulation. However, such CG procedure induces information losses, which makes accurate backmapping, i.e., restoring fine-grained (FG) coordinates from CG coordinates, a long-standing challenge. Inspired by the recent progress in generative models and equivariant networks, we propose a novel model that rigorously embeds the vital probabilistic nature and geometric consistency requirements of the backmapping transformation. Our model encodes the FG uncertainties into an invariant latent space and decodes them back to FG geometries via equivariant convolutions. To standardize the evaluation of this domain, we provide three comprehensive benchmarks based on molecular dynamics trajectories. Experiments show that our approach always recovers more realistic structures and outperforms existing data-driven methods with a significant margin.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.