Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stereo Matching with Cost Volume based Sparse Disparity Propagation

Published 28 Jan 2022 in cs.CV | (2201.11937v1)

Abstract: Stereo matching is crucial for binocular stereo vision. Existing methods mainly focus on simple disparity map fusion to improve stereo matching, which require multiple dense or sparse disparity maps. In this paper, we propose a simple yet novel scheme, termed feature disparity propagation, to improve general stereo matching based on matching cost volume and sparse matching feature points. Specifically, our scheme first calculates a reliable sparse disparity map by local feature matching, and then refines the disparity map by propagating reliable disparities to neighboring pixels in the matching cost domain. In addition, considering the gradient and multi-scale information of local disparity regions, we present a $\rho$-Census cost measure based on the well-known AD-Census, which guarantees the robustness of cost volume even without the cost aggregation step. Extensive experiments on Middlebury stereo benchmark V3 demonstrate that our scheme achieves promising performance comparable to state-of-the-art methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.