Papers
Topics
Authors
Recent
2000 character limit reached

Percolation probability and critical exponents for site percolation on the UIPT

Published 28 Jan 2022 in math.PR, math-ph, math.CO, and math.MP | (2201.11920v1)

Abstract: We derive three critical exponents for Bernoulli site percolation on the on the Uniform Infinite Planar Triangulation (UIPT). First we compute explicitly the probability that the root cluster is infinite. As a consequence, we show that the off-critical exponent for site percolation on the UIPT is $\beta = 1/2$. Then we establish an integral formula for the generating function of the number of vertices in the root cluster. We use this formula to prove that, at criticality, the probability that the root cluster has at least $n$ vertices decays like $n{-1/7}$. Finally, we also derive an expression for the law of the perimeter of the root cluster and use it to establish that, at criticality, the probability that the perimeter of the root cluster is equal to $n$ decays like $n{-4/3}$. Among these three exponents, only the last one was previously known. Our main tools are the so-called gasket decomposition of percolation clusters, generic properties of random Boltzmann maps, as well as analytic combinatorics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.