Papers
Topics
Authors
Recent
2000 character limit reached

On the reality of the quantum state once again: A no-go theorem for $ψ$-ontic models (2201.11842v3)

Published 27 Jan 2022 in quant-ph

Abstract: In this paper we show that $\psi$-ontic models, as defined by Harrigan and Spekkens (HS), cannot reproduce quantum theory. Instead of focusing on probability, we use information theoretic considerations to show that all pure states of $\psi$-ontic models must be orthogonal to each other, in clear violation of quantum mechanics. Given that (i) Pusey, Barrett and Rudolph (PBR) previously showed that $\psi$-epistemic models, as defined by HS, also contradict quantum mechanics, and (ii) the HS categorization is exhausted by these two types of models, we conclude that the HS categorization itself is problematic as it leaves no space for models that can reproduce quantum theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. Leifer and O. Maroney, Maximally Epistemi Interpretations of the Quantum State and Contextuality, Physical Review Letters 110, 120401 (2013).
  2. M. Leifer and M. F. Pusey, Is a time symmetric interpretation of quantum theory possible without retrocausality?, Proceedings of the Royal Society A 473, 20160607 (2017).
  3. C. Branciard, How ψ𝜓\psiitalic_ψ-Epistemic Models Fail at Explaining the Indistinguishability of Quantum States, Physical Review Letters 113, 020409 (2014).
  4. R. Hermens, How Real are Quantum States in ψ𝜓\psiitalic_ψ-Ontic Models?, Foundations of Physics 51 (2021).
  5. C. Wood and R. Spekkens, The lesson of causal discovery algoriths for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning, New Journal of Physics 17, 033002 (2015).
  6. S. Bartlett, T. Rudolph, and R. Spekkens, Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction, Physical Review A 86, 012103 (2012).
  7. A. Oldofredi and C. Lopez, On the Classification between ψ𝜓\psiitalic_ψ-Ontic and ψ𝜓\psiitalic_ψ-Epistemic Ontological Models, Foundations of Physics 50, 1315 (2020).
  8. J. Hance, J. Rarity, and J. Ladyman, Could wavefunctions simultaneously represent knowledge and reality?, Quantum Studies: Mathematics and Foundations 9, 333 (2022).
  9. M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the quantum state, Nature Physics 6, 475 (2012).
  10. M. Leifer, Is the quantum state real? An extended review of ψ𝜓\psiitalic_ψ-ontology theorems, Quanta 3, 67 (2014a).
  11. M. Leifer, ψ𝜓\psiitalic_ψ-Epistemic Models are Exponentially Bad at Explaining the Distinguishability of Quantum States, Physical Review Letters 112, 160404 (2014b).
  12. R. Colbeck and R. Renner, Is a System’s Wave Function in One-to-One Correspondence with Its Elements of Reality?, Physical Review Letters 108, 150402 (2012).
  13. R. Colbeck and R. Renner, A system’s wave function is uniquely determined by its underlying physical state, New Journal of Physics 19, 013016 (2017).
  14. L. Hardy, Are Quantum States Real?, International Journal of Modern Physics B 27 (2013).
  15. M. Patra, S. Pironio, and S. Massar, No-Go Tehorems for ψ𝜓\psiitalic_ψ-Epistemic Models Based on a Continuity Assumption, Physical Review Letters 111, 090402 (2013).
  16. S. Mansfield, Reality of the quantum state: Towards a stronger ψ𝜓\psiitalic_ψ-ontology theorem, Physical Review A 94, 042124 (2016).
  17. M. Schlossauer and A. Fine, Implications of the Pusey-Barrett-Rudolph Quantum No-Go Theorem, Physical Review Letters 108, 260404 (2012).
  18. M. Schlossauer and A. Fine, Is the Pusey-Barrett-Rudolph Theorem Compatble with Quantum Nonseparability?, arXiv:1306.5805v1 , 1 (2013).
  19. M. Schlossauer and A. Fine, No-go theorem for the composition of quantum system, Physical Review Letters 112, 070407 (2014).
  20. Y. Ben-Menahem, The PBR theorem: Whose side is it on?, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57, 80 (2017).
  21. A. Rizzi, Does the PBR Theorem Rule out a Statistical Understanding of QM?, Foundations of Physics 48, 1770 (2018).
  22. A. Oldofredi and C. Calosi, Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence, Foundations of Physics 51 (2021).
  23. J. DeBrota and B. Stacey, FAQBism, arXiv:1810.13401  (2019).
  24. G. Carcassi, C. Aidala, and J. Barbour, Variability as a better characterization of Shannon entropy, European Journal of Physics 42, 045102 (2021).
  25. R. Ash, Information Theory, New Edition (Dover Publications, 2010).
  26. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).
  27. R. F. Werner, Comments on ‘What bell did’, Journal of Physics A: Mathematical and Theoretical 47, 424011 (2014).
  28. I. Pitowsky, Quantum Probability - Quantum Logic (Springer, 1989).
  29. I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2017).
  30. B. D’Espagnat, Reply to K. A. Kirkpatrick, https://arxiv.org/pdf/quant-ph/0111081.pdf , 1 (2001).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.