Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards Data-driven LQR with Koopmanizing Flows

Published 27 Jan 2022 in eess.SY, cs.LG, cs.SY, math.DS, and math.OC | (2201.11640v2)

Abstract: We propose a novel framework for learning linear time-invariant (LTI) models for a class of continuous-time non-autonomous nonlinear dynamics based on a representation of Koopman operators. In general, the operator is infinite-dimensional but, crucially, linear. To utilize it for efficient LTI control design, we learn a finite representation of the Koopman operator that is linear in controls while concurrently learning meaningful lifting coordinates. For the latter, we rely on Koopmanizing Flows - a diffeomorphism-based representation of Koopman operators and extend it to systems with linear control entry. With such a learned model, we can replace the nonlinear optimal control problem with quadratic cost to that of a linear quadratic regulator (LQR), facilitating efficacious optimal control for nonlinear systems. The superior control performance of the proposed method is demonstrated on simulation examples.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.