Exact Optimal Accelerated Complexity for Fixed-Point Iterations
Abstract: Despite the broad use of fixed-point iterations throughout applied mathematics, the optimal convergence rate of general fixed-point problems with nonexpansive nonlinear operators has not been established. This work presents an acceleration mechanism for fixed-point iterations with nonexpansive operators, contractive operators, and nonexpansive operators satisfying a H\"older-type growth condition. We then provide matching complexity lower bounds to establish the exact optimality of the acceleration mechanisms in the nonexpansive and contractive setups. Finally, we provide experiments with CT imaging, optimal transport, and decentralized optimization to demonstrate the practical effectiveness of the acceleration mechanism.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.