Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multivariate matrix-exponential affine mixtures and their applications in risk theory

Published 17 Dec 2021 in q-fin.RM and math.PR | (2201.11122v1)

Abstract: In this paper, a class of multivariate matrix-exponential affine mixtures with matrix-exponential marginals is proposed. The class is shown to possess various attractive properties such as closure under size-biased Esscher transform, order statistics, residual lifetime and higher order equilibrium distributions. This allows for explicit calculations of various actuarial quantities of interest. The results are applied in a wide range of actuarial problems including multivariate risk measures, aggregate loss, large claims reinsurance, weighted premium calculations and risk capital allocation. Furthermore, a multiplicative background risk model with dependent risks is considered and its capital allocation rules are provided as well. We finalize by discussing a calibration scheme based on complete data and potential avenues of research.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.