Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learnable Wavelet Packet Transform for Data-Adapted Spectrograms (2201.11069v1)

Published 26 Jan 2022 in cs.SD, eess.AS, eess.SP, and stat.ML

Abstract: Capturing high-frequency data concerning the condition of complex systems, e.g. by acoustic monitoring, has become increasingly prevalent. Such high-frequency signals typically contain time dependencies ranging over different time scales and different types of cyclic behaviors. Processing such signals requires careful feature engineering, particularly the extraction of meaningful time-frequency features. This can be time-consuming and the performance is often dependent on the choice of parameters. To address these limitations, we propose a deep learning framework for learnable wavelet packet transforms, enabling to learn features automatically from data and optimise them with respect to the defined objective function. The learned features can be represented as a spectrogram, containing the important time-frequency information of the dataset. We evaluate the properties and performance of the proposed approach by evaluating its improved spectral leakage and by applying it to an anomaly detection task for acoustic monitoring.

Citations (11)

Summary

We haven't generated a summary for this paper yet.