Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extended Placement Delivery Arrays for Multi-Antenna Coded Caching Scheme

Published 25 Jan 2022 in cs.IT and math.IT | (2201.10585v1)

Abstract: The multi-antenna coded caching problem, where the server having $L$ transmit antennas communicating to $K$ users through a wireless broadcast link, is addressed. In the problem setting, the server has a library of $N$ files, and each user is equipped with a dedicated cache of capacity $M$. The idea of extended placement delivery array (EPDA), an array which consists of a special symbol $\star$ and integers in a set ${1,2,\dots,S}$, is proposed to obtain a novel solution for the aforementioned multi-antenna coded caching problem. From a $(K,L,F,Z,S)$ EPDA, a multi-antenna coded caching scheme with $K$ users, and the server with $L$ transmit antennas, can be obtained in which the normalized memory $\frac{M}{N}=\frac{Z}{F}$, and the delivery time $T=\frac{S}{F}$. The placement delivery array (for single-antenna coded caching scheme) is a special class of EPDAs with $L=1$. For the multi-antenna coded caching schemes constructed from EPDAs, it is shown that the maximum possible Degree of Freedom (DoF) that can be achieved is $t+L$, where $t=\frac{KM}{N}$ is an integer. Furthermore, two constructions of EPDAs are proposed: a) $ K=t+L$, and b) $K=nt+(n-1)L, \hspace{0.1cm}L\geq t$, where $n\geq 2$ is an integer. In the resulting multi-antenna schemes from those EPDAs achieve the full DoF, while requiring a subpacketization number $\frac{K}{\text{gcd}(K,t,L)}$. This subpacketization number is less than that required by previously known schemes in the literature.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.