Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributed Image Transmission using Deep Joint Source-Channel Coding

Published 25 Jan 2022 in cs.IT, cs.LG, and math.IT | (2201.10340v1)

Abstract: We study the problem of deep joint source-channel coding (D-JSCC) for correlated image sources, where each source is transmitted through a noisy independent channel to the common receiver. In particular, we consider a pair of images captured by two cameras with probably overlapping fields of view transmitted over wireless channels and reconstructed in the center node. The challenging problem involves designing a practical code to utilize both source and channel correlations to improve transmission efficiency without additional transmission overhead. To tackle this, we need to consider the common information across two stereo images as well as the differences between two transmission channels. In this case, we propose a deep neural networks solution that includes lightweight edge encoders and a powerful center decoder. Besides, in the decoder, we propose a novel channel state information aware cross attention module to highlight the overlapping fields and leverage the relevance between two noisy feature maps.Our results show the impressive improvement of reconstruction quality in both links by exploiting the noisy representations of the other link. Moreover, the proposed scheme shows competitive results compared to the separated schemes with capacity-achieving channel codes.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.