Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rank-adaptive time integration of tree tensor networks (2201.10291v2)

Published 25 Jan 2022 in math.NA and cs.NA

Abstract: A rank-adaptive integrator for the approximate solution of high-order tensor differential equations by tree tensor networks is proposed and analyzed. In a recursion from the leaves to the root, the integrator updates bases and then evolves connection tensors by a Galerkin method in the augmented subspace spanned by the new and old bases. This is followed by rank truncation within a specified error tolerance. The memory requirements are linear in the order of the tensor and linear in the maximal mode dimension. The integrator is robust to small singular values of matricizations of the connection tensors. Up to the rank truncation error, which is controlled by the given error tolerance, the integrator preserves norm and energy for Schrodinger equations, and it dissipates the energy in gradient systems. Numerical experiments with a basic quantum spin system illustrate the behavior of the proposed algorithm.

Citations (17)

Summary

We haven't generated a summary for this paper yet.