Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Inference with Nonlinear Generative Models: Comments on Secure Learning (2201.09986v3)

Published 19 Jan 2022 in cs.IT, cs.CR, cs.LG, math.IT, and stat.ML

Abstract: Unlike the classical linear model, nonlinear generative models have been addressed sparsely in the literature of statistical learning. This work aims to bringing attention to these models and their secrecy potential. To this end, we invoke the replica method to derive the asymptotic normalized cross entropy in an inverse probability problem whose generative model is described by a Gaussian random field with a generic covariance function. Our derivations further demonstrate the asymptotic statistical decoupling of the Bayesian estimator and specify the decoupled setting for a given nonlinear model. The replica solution depicts that strictly nonlinear models establish an all-or-nothing phase transition: There exists a critical load at which the optimal Bayesian inference changes from perfect to an uncorrelated learning. Based on this finding, we design a new secure coding scheme which achieves the secrecy capacity of the wiretap channel. This interesting result implies that strictly nonlinear generative models are perfectly secured without any secure coding. We justify this latter statement through the analysis of an illustrative model for perfectly secure and reliable inference.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.