Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Endpoint Detection for Streaming End-to-End Multi-talker ASR (2201.09979v1)

Published 24 Jan 2022 in eess.AS and cs.SD

Abstract: Streaming end-to-end multi-talker speech recognition aims at transcribing the overlapped speech from conversations or meetings with an all-neural model in a streaming fashion, which is fundamentally different from a modular-based approach that usually cascades the speech separation and the speech recognition models trained independently. Previously, we proposed the Streaming Unmixing and Recognition Transducer (SURT) model based on recurrent neural network transducer (RNN-T) for this problem and presented promising results. However, for real applications, the speech recognition system is also required to determine the timestamp when a speaker finishes speaking for prompt system response. This problem, known as endpoint (EP) detection, has not been studied previously for multi-talker end-to-end models. In this work, we address the EP detection problem in the SURT framework by introducing an end-of-sentence token as an output unit, following the practice of single-talker end-to-end models. Furthermore, we also present a latency penalty approach that can significantly cut down the EP detection latency. Our experimental results based on the 2-speaker LibrispeechMix dataset show that the SURT model can achieve promising EP detection without significantly degradation of the recognition accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Liang Lu (42 papers)
  2. Jinyu Li (164 papers)
  3. Yifan Gong (82 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.