Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pearl: Parallel Evolutionary and Reinforcement Learning Library

Published 24 Jan 2022 in cs.LG and cs.NE | (2201.09568v1)

Abstract: Reinforcement learning is increasingly finding success across domains where the problem can be represented as a Markov decision process. Evolutionary computation algorithms have also proven successful in this domain, exhibiting similar performance to the generally more complex reinforcement learning. Whilst there exist many open-source reinforcement learning and evolutionary computation libraries, no publicly available library combines the two approaches for enhanced comparison, cooperation, or visualization. To this end, we have created Pearl (https://github.com/LondonNode/Pearl), an open source Python library designed to allow researchers to rapidly and conveniently perform optimized reinforcement learning, evolutionary computation and combinations of the two. The key features within Pearl include: modular and expandable components, opinionated module settings, Tensorboard integration, custom callbacks and comprehensive visualizations.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.