Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling Style and Speaker Attributes for TTS Style Transfer (2201.09472v1)

Published 24 Jan 2022 in cs.SD and eess.AS

Abstract: End-to-end neural TTS has shown improved performance in speech style transfer. However, the improvement is still limited by the available training data in both target styles and speakers. Additionally, degenerated performance is observed when the trained TTS tries to transfer the speech to a target style from a new speaker with an unknown, arbitrary style. In this paper, we propose a new approach to seen and unseen style transfer training on disjoint, multi-style datasets, i.e., datasets of different styles are recorded, one individual style by one speaker in multiple utterances. An inverse autoregressive flow (IAF) technique is first introduced to improve the variational inference for learning an expressive style representation. A speaker encoder network is then developed for learning a discriminative speaker embedding, which is jointly trained with the rest neural TTS modules. The proposed approach of seen and unseen style transfer is effectively trained with six specifically-designed objectives: reconstruction loss, adversarial loss, style distortion loss, cycle consistency loss, style classification loss, and speaker classification loss. Experiments demonstrate, both objectively and subjectively, the effectiveness of the proposed approach for seen and unseen style transfer tasks. The performance of our approach is superior to and more robust than those of four other reference systems of prior art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiaochun An (2 papers)
  2. Frank K. Soong (17 papers)
  3. Lei Xie (337 papers)
Citations (18)