Papers
Topics
Authors
Recent
Search
2000 character limit reached

Consolidating Marginalism and Egalitarianism: A New Value for Transferable Utility Games

Published 23 Jan 2022 in econ.TH | (2201.09182v1)

Abstract: In cooperative games with transferable utilities, the Shapley value is an extreme case of marginalism while the Equal Division rule is an extreme case of egalitarianism. The Shapley value does not assign anything to the non-productive players and the Equal Division rule does not concern itself to the relative efficiency of the players in generating a resource. However, in real life situations neither of them is a good fit for the fair distribution of resources as the society is neither devoid of solidarity nor it can be indifferent to rewarding the relatively more productive players. Thus a trade-off between these two extreme cases has caught attention from many researchers. In this paper, we obtain a new value for cooperative games with transferable utilities that adopts egalitarianism in smaller coalitions on one hand and on the other hand takes care of the players' marginal productivity in sufficiently large coalitions. Our value is identical with the Shapley value on one extreme and the Equal Division rule on the other extreme. We provide four characterizations of the value using variants of standard axioms in the literature. We have also developed a strategic implementation mechanism of our value in sub-game perfect Nash equilibrium.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.