Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neuronal Correlation: a Central Concept in Neural Network (2201.09069v1)

Published 22 Jan 2022 in cs.LG

Abstract: This paper proposes to study neural networks through neuronal correlation, a statistical measure of correlated neuronal activity on the penultimate layer. We show that neuronal correlation can be efficiently estimated via weight matrix, can be effectively enforced through layer structure, and is a strong indicator of generalisation ability of the network. More importantly, we show that neuronal correlation significantly impacts on the accuracy of entropy estimation in high-dimensional hidden spaces. While previous estimation methods may be subject to significant inaccuracy due to implicit assumption on neuronal independence, we present a novel computational method to have an efficient and authentic computation of entropy, by taking into consideration the neuronal correlation. In doing so, we install neuronal correlation as a central concept of neural network.

Citations (2)

Summary

We haven't generated a summary for this paper yet.